
AI in  
Application 
Security
Finding Value in the Hype



‭TABLE OF CONTENTS‬

‭Overview‬ ‭2‬

‭All Models are Not Created Equal‬ ‭3‬

‭Why Use AI for AppSec?‬ ‭4‬

‭Where to Apply AI?‬ ‭5‬

‭Challenges to Using AI in AppSec‬ ‭7‬

‭How to Do it Right‬ ‭8‬

‭Conclusion‬ ‭12‬

‭1‬



‭Overview‬
‭There’s no doubt that generative AI is having its time in the sun.  Popularized by tools like ChatGPT‬
‭and Midjourney, AI has made its way up most organizations' priority lists.‬ ‭Gartner‬‭predicts that by‬
‭2026, more than 80% of enterprises will have used generative AI APIs or models and/or deployed‬
‭generative AI-enabled applications in production environments.  This is up from less than 5% in‬
‭2023, so we’re really at the beginning of the expansion of professional-grade generative AI.‬

‭Of course, with all of the buzz around AI, it’s hard to tell the actual use cases from the hype.  Is there‬
‭a legitimate use for AI in application security?  The quick answer is “yes,” but it’s a much more‬
‭nuanced question than one might think.  In this whitepaper, we’ll look at the ins and outs of‬
‭generative AI: the types of models, use cases for AI, and how to best use AI to help organizations to‬
‭ultimately produce more secure code.‬

‭2‬

https://www.gartner.com/document/4726631?ref=ki-10545&toggle=1&viewType=Full


‭All Models are Not Created Equal‬
‭Unless you’re working directly with AI, the terminology can seem a bit confusing.  So let’s first look at‬
‭the most common AI terms you’re most likely hearing.‬

‭●‬ ‭Generative AI (GenAI or GAI):‬ ‭AI models trained on‬‭large volumes of data to‬
‭generate new data or content independently.  The key capability of generative AI is‬
‭synthesizing novel outputs, such as images, videos, text, or other multimedia, that‬
‭are realistic but not simply copied from the training data.   Midjourney and DALL-E are‬
‭great examples of Generative AI used to create new and unique images rather than‬
‭just pulling from pre-existing content.‬

‭●‬ ‭Foundation Models:‬‭Foundation models are large, pre-trained‬‭machine learning‬
‭models that serve as a foundation for building diverse AI applications. Foundation‬
‭models like BERT and GPT-3 are trained on vast datasets in an unsupervised‬
‭manner to capture general patterns about the world, after which they can be adapted‬
‭and fine-tuned for a wide range of applications.‬

‭●‬ ‭Large Language Models (LLM):‬‭AI trained on vast amounts‬‭of text, allowing it to‬
‭interpret and generate humanlike text.‬

‭●‬ ‭ChatGPT:‬ ‭Undoubtedly the most common term used in‬‭relation to AI.  ChatGPT is‬
‭a product from OpenAI that marries a conversational chatbot with an LLM to create‬
‭content.  Trained on a foundational model of billions of words from multiple sources‬
‭and fine-tuned by learning from human feedback.‬

‭3‬



‭Open-source models may seem like a‬
‭cheap and easy fix, but that is highly‬
‭dependent on the use case.  If you‬
‭need more focused and specialized‬
‭datasets, a proprietary LLM trained on‬
‭data specific to your use case is the‬
‭better option.‬

‭That’s not to say that open-source‬
‭LLMs won’t see‬
‭improvement; in fact, we should expect‬
‭to see more specialized LLMs slowly‬
‭emerge, but for the foreseeable future,‬
‭proprietary LLMs will maintain a‬
‭significant lead in efficacy.‬

‭Why Use AI for AppSec?‬
‭With artificial intelligence being one of the most hyped technologies of recent years, it's no surprise‬
‭that companies are rushing to incorporate AI capabilities into their products. However, while in some‬
‭cases integrating AI leads to truly enhanced functionality and performance, there are certainly‬
‭instances where its inclusion seems to be primarily a marketing ploy to take advantage of the AI‬
‭hype cycle.  While AI can genuinely enhance products, businesses must ensure they integrate it‬
‭responsibly and not just for hype.‬

‭AI has been an active part of cybersecurity for some years now.  A great example is the‬
‭transformation of the endpoint security space.  The dirty secret in the anti-virus industry was that‬
‭despite behavioral rules and heuristic detection methods, most protection was done by humans‬
‭sitting in a room writing signatures for each new attack.  Then, vendors like Cylance and others‬
‭introduced an AI-based method of detecting new threats on the endpoint, and the rest of the‬
‭industry quickly followed suit.  Now if you aren’t using AI on the endpoint, you’re considered‬
‭outdated and “last-gen”.  Given that AppSec faces a similar battle against an active cybercriminal‬
‭community, it’s only natural to adopt a similar approach.‬

‭4‬



‭Where to Apply AI?‬
‭The most logical place to use AI in application security is Static Application Security Testing‬
‭(SAST).  Software Composition Analysis (SCA) tends to be more straightforward from an analysis‬
‭perspective, as the security issues associated with open-source libraries are fairly well-documented‬
‭and frequently updated.‬

‭Detection‬
‭The predominant methods for detecting vulnerabilities in SAST today are very similar in concept to‬
‭the earlier days of antivirus.  While there are technical nuances to how most SAST vendors scan‬
‭code, ultimately, it comes down to combining heuristics, pattern matching, and a degree of human‬
‭analysis.  While this can do a passable job, the level of accuracy from both a false positive and false‬
‭negative perspective can suffer dramatically.  While not optimal, many organizations accept this‬
‭lower efficacy, thinking that some results are better than not scanning at all. This can have the‬
‭unfortunate side effect of developers ignoring results due to high false positives, effectively making‬
‭some SAST tools a “checkbox” item but not being fully utilized.‬

‭AI can help address many of the shortcomings of SAST tools by enhancing the detections they‬
‭already have in place, but also by utilizing some of the things AI excels at: pattern recognition and‬
‭learning.  Here are some ways AI can improve  SAST:‬

‭●‬ ‭Attack pattern recognition:‬ ‭AI models can be trained‬‭to recognize general attack‬
‭types and find those quickly in closed-source code libraries.  Vulnerabilities like buffer‬
‭overflows, SQL injection, and cross-site scripting have recognizable patterns but can‬
‭also seem very similar to legitimate code, making it difficult to detect purely by‬
‭traditional heuristics detection.  An AI trained on robust data sets can help avoid false‬
‭positives and false negatives.‬

‭●‬ ‭Reducing false positives:‬ ‭Machine learning algorithms‬‭can learn to distinguish‬
‭between real vulnerabilities and false positives based on context. This allows the‬
‭SAST tool to focus just on the real threats.‬

‭●‬ ‭Zero-day detection:‬ ‭AI models can be trained to understand‬‭secure vs. vulnerable‬
‭coding patterns by analyzing large code datasets. This knowledge can then assist‬
‭SAST tools in identifying new types of vulnerabilities, potentially finding new zero-day‬
‭vulnerabilities before the bad guys know they exist.‬

‭●‬ ‭Adaptive learning over time:‬‭With continuous training‬‭on new code, ML models‬
‭can learn to find new types of vulnerabilities and adapt to changing codebases. This‬
‭makes the AI-enhanced SAST more robust over time.‬

‭5‬



‭The key is to use AI in ways that augment human analysts rather than replace them entirely. The‬
‭ideal state is having security analysts focus on uncovering the root causes of vulnerabilities and‬
‭pinpointing classes of attacks ahead of the bad guys instead of scrambling to write signatures each‬
‭time a new exploit is released.  AI helps accelerate SAST, reduce noise, and enable humans to‬
‭focus on higher-value security issues.‬

‭Fixing Code‬
‭The next logical step in AI use in SAST is to fix the issues discovered during a SAST scan.  AI can‬
‭be a great tool to assist in providing fixes, but this is definitely an area where human interaction is‬
‭required.  Each individual piece of code has variations and nuances that are particular to that‬
‭application and implementation, which can be lost on an AI.  Users shouldn’t expect AI to fix all their‬
‭issues automatically but should look to AI to help with suggestions and best practices.  Here are‬
‭some areas AI could assist with when it comes to fixing code:‬

‭●‬ ‭Code pattern learning -‬‭AI models can be trained to‬‭learn secure coding practices‬
‭and patterns. They can then suggest fixes when vulnerable patterns are detected.‬

‭●‬ ‭Automated patching -‬‭For common vulnerabilities with‬‭established fixes, AI could‬
‭be trained to make those patches automatically. It is useful for easily fixable bugs, but‬
‭users may be resistant to automatic changes implemented by AI.‬

‭●‬ ‭Generating fix options -‬‭Instead of just flagging‬‭bugs, AI models might suggest‬
‭possible ways to fix them, such as adding input validation, encoding output, etc.‬

‭●‬ ‭Code hardening -‬‭Machine learning can help add appropriate‬‭security controls like‬
‭rate limiting, input sanitization, etc., based on analyzing app behavior and data flows.‬

‭●‬ ‭Providing code snippets -‬‭AI code completion tools‬‭can suggest secure code‬
‭snippets to developers to help them learn to program more securely.‬

‭●‬ ‭Identifying potential issues associated with a fix -‬‭Before deploying fixes, AI can‬
‭help assess downstream impacts on functionality and behavior (e.g., the only known‬
‭fix for a vulnerability is to upgrade a library, but that library would break other‬
‭dependencies elsewhere in the code)‬

‭6‬



‭Challenges to Using AI in AppSec‬
‭Many challenges with using AI in AppSec stem from the relative newness of commercially available‬
‭generative AI tools.  With any cutting-edge technology, there are always a few bumps in the road‬
‭that are eventually smoothed out.  We expect to see the severity of these challenges decrease over‬
‭the next few years as overall adoption increases and tools go through more iterations.  Here are a‬
‭few challenges to look out for:‬

‭●‬ ‭Training data requirements‬‭- Large, high-quality,‬‭representative datasets are needed‬
‭to train effective AI models. Security data can be noisy, imbalanced, and insufficient,‬
‭requiring a diligent eye on the AI model's training.‬

‭●‬ ‭Explainability vs. accuracy tradeoff‬‭- More complex‬‭AI models like neural networks‬
‭increase accuracy but reduce the explainability of results. The end user must be able‬
‭to accurately understand the returned results, or the results will most likely be‬
‭ignored.‬

‭●‬ ‭Potential for bias‬‭- Training data or design choices‬‭may unintentionally introduce bias‬
‭into the AI model and cause it to overlook certain vulnerability patterns.‬

‭●‬ ‭AI hallucinations‬ ‭- Similar to the previous point,‬‭AI models have been known to be‬
‭“confidently incorrect” at times if not provided the proper training data.  The AI is only‬
‭as intelligent as its training data, and if fed incorrect information, it will give inaccurate‬
‭results.‬

‭●‬ ‭Evolution of attacks‬‭- If the AI is trained on current‬‭attack types and behaviors, it may‬
‭miss new attack techniques that emerge in the future. AI requires constant retraining‬
‭and updating.‬

‭●‬ ‭Integration challenges‬‭- Effectively integrating AI‬‭detection into existing security tools‬
‭and workflows can require overcoming technical debt and changing processes built‬
‭without AI in mind.  This is particularly challenging for tools looking to “shoehorn” AI‬
‭into their existing platform.‬

‭How to Do it Right‬
‭As we look to the future of application security, AI is poised to transform AppSec much like it did the‬
‭endpoint protection space.  However, the industry must embrace AI thoughtfully and responsibly to‬
‭realize the full benefits.  While we should expect to see varying levels of AI implementation, some‬
‭common points must be included to provide robust tools for AppSec:‬

‭7‬



‭●‬ ‭AI should be trained on a purpose-built dataset:‬ ‭While open-source LLMs do a‬
‭decent job of providing a base level of information, there is no replacement for a finely‬
‭tuned LLM created with real-world AppSec data.  Given the wide variety of‬
‭applications, languages, and programming styles, any LLM used for AppSec must be‬
‭carefully curated and constantly trained by professionals with experience in code‬
‭science and application security.‬

‭●‬ ‭AI should be built in, not bolted on:‬ ‭AI should be‬‭a foundational part of the‬
‭toolset, not an afterthought.  Due to the complexity of AI models, inefficient‬
‭integration of AI will result in high false positive and false negative rates, ultimately‬
‭leading to mistrust by the end user.  In the development space, if developers can’t‬
‭trust the results from the AppSec tool, they will eventually ignore the tool, negating‬
‭any potential value.‬

‭●‬ ‭Constant training and tuning:‬ ‭Cybersecurity is constantly‬‭evolving, with new‬
‭attacks popping up every few seconds.  The application space is also a developing‬
‭area, with languages fluctuating in popularity and usage.  Add those two factors‬
‭together, and any AI tool not constantly going through training cycles will quickly‬
‭become obsolete.‬

‭Conclusion‬
‭As we look to the future of application security, AI is poised to transform the AppSec space, just like‬
‭it did with endpoint and network security. This transformation will allow for faster and more accurate‬
‭detection of vulnerabilities in code and offer potential solutions.  However, the industry must‬
‭embrace AI thoughtfully and responsibly to realize the full benefits. Bolting on AI to an existing‬
‭AppSec platform may let vendors tick a checkbox but will ultimately lead to suboptimal results.  We‬
‭are at the tipping point of a colossal shift in code security, but it can be challenging to quiet the noise‬
‭around the hype.  However, if you can cancel out the noise, the benefits of a great AI-enhanced‬
‭application security platform can change the game for you and help you focus on what’s important:‬
‭releasing secure code.‬

‭About Qwiet AI‬
‭Qwiet AI is the AI-enhanced application security testing platform that provides SAST, SCA,‬
‭Container Scanning, and Secrets Detection all in one fast and comprehensive scan.  Qwiet AI‬
‭customers benefit from targeted results with scans that are 10x faster and 12x more accurate than‬
‭traditional application security tools.‬

‭8‬


