
AI in
Application
Security
Finding Value in the Hype

 TABLE OF CONTENTS

 Overview 2

 All Models are Not Created Equal 3

 Why Use AI for AppSec? 4

 Where to Apply AI? 5

 Challenges to Using AI in AppSec 7

 How to Do it Right 8

 Conclusion 12

 1

 Overview
 There’s no doubt that generative AI is having its time in the sun. Popularized by tools like ChatGPT
 and Midjourney, AI has made its way up most organizations' priority lists. Gartner predicts that by
 2026, more than 80% of enterprises will have used generative AI APIs or models and/or deployed
 generative AI-enabled applications in production environments. This is up from less than 5% in
 2023, so we’re really at the beginning of the expansion of professional-grade generative AI.

 Of course, with all of the buzz around AI, it’s hard to tell the actual use cases from the hype. Is there
 a legitimate use for AI in application security? The quick answer is “yes,” but it’s a much more
 nuanced question than one might think. In this whitepaper, we’ll look at the ins and outs of
 generative AI: the types of models, use cases for AI, and how to best use AI to help organizations to
 ultimately produce more secure code.

 2

https://www.gartner.com/document/4726631?ref=ki-10545&toggle=1&viewType=Full

 All Models are Not Created Equal
 Unless you’re working directly with AI, the terminology can seem a bit confusing. So let’s first look at
 the most common AI terms you’re most likely hearing.

 ● Generative AI (GenAI or GAI): AI models trained on large volumes of data to
 generate new data or content independently. The key capability of generative AI is
 synthesizing novel outputs, such as images, videos, text, or other multimedia, that
 are realistic but not simply copied from the training data. Midjourney and DALL-E are
 great examples of Generative AI used to create new and unique images rather than
 just pulling from pre-existing content.

 ● Foundation Models: Foundation models are large, pre-trained machine learning
 models that serve as a foundation for building diverse AI applications. Foundation
 models like BERT and GPT-3 are trained on vast datasets in an unsupervised
 manner to capture general patterns about the world, after which they can be adapted
 and fine-tuned for a wide range of applications.

 ● Large Language Models (LLM): AI trained on vast amounts of text, allowing it to
 interpret and generate humanlike text.

 ● ChatGPT: Undoubtedly the most common term used in relation to AI. ChatGPT is
 a product from OpenAI that marries a conversational chatbot with an LLM to create
 content. Trained on a foundational model of billions of words from multiple sources
 and fine-tuned by learning from human feedback.

 3

 Open-source models may seem like a
 cheap and easy fix, but that is highly
 dependent on the use case. If you
 need more focused and specialized
 datasets, a proprietary LLM trained on
 data specific to your use case is the
 better option.

 That’s not to say that open-source
 LLMs won’t see
 improvement; in fact, we should expect
 to see more specialized LLMs slowly
 emerge, but for the foreseeable future,
 proprietary LLMs will maintain a
 significant lead in e�cacy.

 Why Use AI for AppSec?
 With artificial intelligence being one of the most hyped technologies of recent years, it's no surprise
 that companies are rushing to incorporate AI capabilities into their products. However, while in some
 cases integrating AI leads to truly enhanced functionality and performance, there are certainly
 instances where its inclusion seems to be primarily a marketing ploy to take advantage of the AI
 hype cycle. While AI can genuinely enhance products, businesses must ensure they integrate it
 responsibly and not just for hype.

 AI has been an active part of cybersecurity for some years now. A great example is the
 transformation of the endpoint security space. The dirty secret in the anti-virus industry was that
 despite behavioral rules and heuristic detection methods, most protection was done by humans
 sitting in a room writing signatures for each new attack. Then, vendors like Cylance and others
 introduced an AI-based method of detecting new threats on the endpoint, and the rest of the
 industry quickly followed suit. Now if you aren’t using AI on the endpoint, you’re considered
 outdated and “last-gen”. Given that AppSec faces a similar battle against an active cybercriminal
 community, it’s only natural to adopt a similar approach.

 4

 Where to Apply AI?
 The most logical place to use AI in application security is Static Application Security Testing
 (SAST). Software Composition Analysis (SCA) tends to be more straightforward from an analysis
 perspective, as the security issues associated with open-source libraries are fairly well-documented
 and frequently updated.

 Detection
 The predominant methods for detecting vulnerabilities in SAST today are very similar in concept to
 the earlier days of antivirus. While there are technical nuances to how most SAST vendors scan
 code, ultimately, it comes down to combining heuristics, pattern matching, and a degree of human
 analysis. While this can do a passable job, the level of accuracy from both a false positive and false
 negative perspective can su�er dramatically. While not optimal, many organizations accept this
 lower e�cacy, thinking that some results are better than not scanning at all. This can have the
 unfortunate side e�ect of developers ignoring results due to high false positives, e�ectively making
 some SAST tools a “checkbox” item but not being fully utilized.

 AI can help address many of the shortcomings of SAST tools by enhancing the detections they
 already have in place, but also by utilizing some of the things AI excels at: pattern recognition and
 learning. Here are some ways AI can improve SAST:

 ● Attack pattern recognition: AI models can be trained to recognize general attack
 types and find those quickly in closed-source code libraries. Vulnerabilities like bu�er
 overflows, SQL injection, and cross-site scripting have recognizable patterns but can
 also seem very similar to legitimate code, making it di�cult to detect purely by
 traditional heuristics detection. An AI trained on robust data sets can help avoid false
 positives and false negatives.

 ● Reducing false positives: Machine learning algorithms can learn to distinguish
 between real vulnerabilities and false positives based on context. This allows the
 SAST tool to focus just on the real threats.

 ● Zero-day detection: AI models can be trained to understand secure vs. vulnerable
 coding patterns by analyzing large code datasets. This knowledge can then assist
 SAST tools in identifying new types of vulnerabilities, potentially finding new zero-day
 vulnerabilities before the bad guys know they exist.

 ● Adaptive learning over time: With continuous training on new code, ML models
 can learn to find new types of vulnerabilities and adapt to changing codebases. This
 makes the AI-enhanced SAST more robust over time.

 5

 The key is to use AI in ways that augment human analysts rather than replace them entirely. The
 ideal state is having security analysts focus on uncovering the root causes of vulnerabilities and
 pinpointing classes of attacks ahead of the bad guys instead of scrambling to write signatures each
 time a new exploit is released. AI helps accelerate SAST, reduce noise, and enable humans to
 focus on higher-value security issues.

 Fixing Code
 The next logical step in AI use in SAST is to fix the issues discovered during a SAST scan. AI can
 be a great tool to assist in providing fixes, but this is definitely an area where human interaction is
 required. Each individual piece of code has variations and nuances that are particular to that
 application and implementation, which can be lost on an AI. Users shouldn’t expect AI to fix all their
 issues automatically but should look to AI to help with suggestions and best practices. Here are
 some areas AI could assist with when it comes to fixing code:

 ● Code pattern learning - AI models can be trained to learn secure coding practices
 and patterns. They can then suggest fixes when vulnerable patterns are detected.

 ● Automated patching - For common vulnerabilities with established fixes, AI could
 be trained to make those patches automatically. It is useful for easily fixable bugs, but
 users may be resistant to automatic changes implemented by AI.

 ● Generating fix options - Instead of just flagging bugs, AI models might suggest
 possible ways to fix them, such as adding input validation, encoding output, etc.

 ● Code hardening - Machine learning can help add appropriate security controls like
 rate limiting, input sanitization, etc., based on analyzing app behavior and data flows.

 ● Providing code snippets - AI code completion tools can suggest secure code
 snippets to developers to help them learn to program more securely.

 ● Identifying potential issues associated with a fix - Before deploying fixes, AI can
 help assess downstream impacts on functionality and behavior (e.g., the only known
 fix for a vulnerability is to upgrade a library, but that library would break other
 dependencies elsewhere in the code)

 6

 Challenges to Using AI in AppSec
 Many challenges with using AI in AppSec stem from the relative newness of commercially available
 generative AI tools. With any cutting-edge technology, there are always a few bumps in the road
 that are eventually smoothed out. We expect to see the severity of these challenges decrease over
 the next few years as overall adoption increases and tools go through more iterations. Here are a
 few challenges to look out for:

 ● Training data requirements - Large, high-quality, representative datasets are needed
 to train e�ective AI models. Security data can be noisy, imbalanced, and insu�cient,
 requiring a diligent eye on the AI model's training.

 ● Explainability vs. accuracy tradeo� - More complex AI models like neural networks
 increase accuracy but reduce the explainability of results. The end user must be able
 to accurately understand the returned results, or the results will most likely be
 ignored.

 ● Potential for bias - Training data or design choices may unintentionally introduce bias
 into the AI model and cause it to overlook certain vulnerability patterns.

 ● AI hallucinations - Similar to the previous point, AI models have been known to be
 “confidently incorrect” at times if not provided the proper training data. The AI is only
 as intelligent as its training data, and if fed incorrect information, it will give inaccurate
 results.

 ● Evolution of attacks - If the AI is trained on current attack types and behaviors, it may
 miss new attack techniques that emerge in the future. AI requires constant retraining
 and updating.

 ● Integration challenges - E�ectively integrating AI detection into existing security tools
 and workflows can require overcoming technical debt and changing processes built
 without AI in mind. This is particularly challenging for tools looking to “shoehorn” AI
 into their existing platform.

 How to Do it Right
 As we look to the future of application security, AI is poised to transform AppSec much like it did the
 endpoint protection space. However, the industry must embrace AI thoughtfully and responsibly to
 realize the full benefits. While we should expect to see varying levels of AI implementation, some
 common points must be included to provide robust tools for AppSec:

 7

 ● AI should be trained on a purpose-built dataset: While open-source LLMs do a
 decent job of providing a base level of information, there is no replacement for a finely
 tuned LLM created with real-world AppSec data. Given the wide variety of
 applications, languages, and programming styles, any LLM used for AppSec must be
 carefully curated and constantly trained by professionals with experience in code
 science and application security.

 ● AI should be built in, not bolted on: AI should be a foundational part of the
 toolset, not an afterthought. Due to the complexity of AI models, ine�cient
 integration of AI will result in high false positive and false negative rates, ultimately
 leading to mistrust by the end user. In the development space, if developers can’t
 trust the results from the AppSec tool, they will eventually ignore the tool, negating
 any potential value.

 ● Constant training and tuning: Cybersecurity is constantly evolving, with new
 attacks popping up every few seconds. The application space is also a developing
 area, with languages fluctuating in popularity and usage. Add those two factors
 together, and any AI tool not constantly going through training cycles will quickly
 become obsolete.

 Conclusion
 As we look to the future of application security, AI is poised to transform the AppSec space, just like
 it did with endpoint and network security. This transformation will allow for faster and more accurate
 detection of vulnerabilities in code and o�er potential solutions. However, the industry must
 embrace AI thoughtfully and responsibly to realize the full benefits. Bolting on AI to an existing
 AppSec platform may let vendors tick a checkbox but will ultimately lead to suboptimal results. We
 are at the tipping point of a colossal shift in code security, but it can be challenging to quiet the noise
 around the hype. However, if you can cancel out the noise, the benefits of a great AI-enhanced
 application security platform can change the game for you and help you focus on what’s important:
 releasing secure code.

 About Qwiet AI
 Qwiet AI is the AI-enhanced application security testing platform that provides SAST, SCA,
 Container Scanning, and Secrets Detection all in one fast and comprehensive scan. Qwiet AI
 customers benefit from targeted results with scans that are 10x faster and 12x more accurate than
 traditional application security tools.

 8

