


In the ever-evolving landscape of software development, ensuring the security of
applications has become a paramount concern. As cyber threats continue to grow
in sophistication, it is crucial for developers and security professionals to stay
ahead of the curve. This article explores a groundbreaking approach that
combines the power of Code Property Graphs (CPGs) and Large Language
Models (LLMs) to revolutionize vulnerability detection and patching processes.

TABLE OF CONTENTS

Understanding Code Property Graphs 2

The Power of Graph-based Machine Learning (ML) and Deep Learning
Techniques Over CPG 5

The Power of Generative AI - Large Language Models 7

Conclusion 10

1



Understanding Code Property Graphs
Code Property Graphs are a powerful tool for representing and analyzing the intricate relationships
within software code. By transforming source code into a graph structure, CPGs enable developers
to gain deep insights into the flow of data, control dependencies, and other critical aspects of the
codebase. This granular level of understanding is essential for identifying potential vulnerabilities
that might otherwise go unnoticed.

At its core, a Code Property Graph is a unified representation of a software system that combines
various aspects of the code, such as syntax, control flow, and data flow, into a single graph structure.
Each node in the graph represents a code element (e.g., variables, functions, statements), while
the edges represent the relationships between these elements.

Syntax Trees
The Building Blocks of CPGs The foundation of a CPG lies in the syntax tree, which captures the
syntactic structure of the code. The syntax tree represents the hierarchical arrangement of code
elements, such as functions, classes, and statements. By incorporating the syntax tree into the
CPG, we can gain a granular understanding of the code's structure and identify potential
vulnerabilities that arise from syntactic patterns.

For example, consider a code snippet that concatenates user input directly into an SQL query
without proper sanitization:

sql_query = "SELECT * FROM users WHERE username = '" + user_input + "';"

Control Flow
Navigating the Execution Paths Control flow analysis is a crucial component of CPGs, as it helps in
understanding the possible execution paths that the code can take. By representing control flow as
edges in the graph, CPGs enable us to track the flow of execution from one code element to
another.

2



Control flow analysis can uncover vulnerabilities that arise from improper handling of control
structures, such as conditional statements or loops. For instance, consider a code snippet that
performs authentication:

if (user.isAuthenticated())
{ // Grant access to sensitive resources }

else
{ // Deny access }

By analyzing the control flow, we can identify if there are any paths that bypass the authentication
check or if there are any unintended paths that lead to unauthorized access.

Data Flow

Tracking the Flow of Information Data flow analysis is another essential aspect of CPGs, as it allows
us to track how data moves through the codebase. By representing data dependencies as edges in
the graph, CPGs enable us to trace the flow of information from its origin to its eventual use.

Data flow analysis is particularly useful in identifying vulnerabilities related to improper handling of
user input or sensitive data. For example, consider a code snippet that reads user input and uses it
to construct a file path:

String filePath = "/user/data/" + userInput; File file = new File(filePath);

By analyzing the data flow, we can determine if the user input is properly validated or sanitized
before being used in the file path construction. If not, it could lead to vulnerabilities such as path
traversal or arbitrary file access.

Extracting Exploitable Paths By combining the information from syntax trees, control flow, and data
flow, CPGs provide a powerful tool for identifying potential vulnerabilities and extracting exploitable
paths.

We can perform graph traversals and queries on the CPG to extract exploitable paths. For instance,
we can search for paths that originate from user input sources (e.g., HTTP requests, command-line
arguments) and flow into sensitive sinks (e.g., database queries, file system operations) without
proper validation or sanitization. These paths represent potential attack vectors that an attacker
could exploit.

3



Here's an example query that identifies paths from user input to SQL queries:

START n=node:UserInput()

MATCH (n)-[*]->(m:SQLQuery)

RETURN n, m

This query starts from nodes representing user input and follows any path that leads to nodes
representing SQL queries. The returned paths highlight the flow of user input into SQL queries,
allowing us to identify potential SQL injection vulnerabilities.

By leveraging the rich information captured in CPGs, we can perform complex analyses and
uncover vulnerabilities that might be difficult to detect through manual code review or traditional
static analysis techniques.

(fig a - representation of a Code Property Graph - src Wikipedia)

For more in-depth information on Code Property Graphs, please see the original paper by Fabian
Yamaguchi.

4

https://en.wikipedia.org/wiki/Code_property_graph
https://ieeexplore.ieee.org/document/6956589
https://ieeexplore.ieee.org/document/6956589


The Power of Graph-based Machine
Learning (ML) and Deep Learning
Techniques Over CPG
The graph-based nature of CPGsmakes them an ideal candidate for applying Graph-based
Machine Learning and Deep Learning techniques. These techniques can help uncover hidden
patterns, predict potential vulnerabilities, and provide insights that traditional analysis methods
might overlook.

Node Classification

Node classification is a fundamental task in graph-based machine learning, where the goal is to
assign labels or categories to nodes based on their features and the structure of the graph. In the
context of CPGs, node classification can be used to identify code elements that are likely to contain
vulnerabilities.

For example, let's consider a CPG where nodes represent functions in a codebase. By extracting
features such as the number of parameters, cyclomatic complexity, and the presence of certain API
calls, we can train a machine learning model to classify nodes as "vulnerable" or "safe." This
classification can help prioritize code review efforts and focus attention on the most critical parts of
the codebase.

One popular approach for node classification is using Graph Neural Networks (GNNs). GNNs can
learn representations of nodes by aggregating information from their neighboring nodes and edges.
For instance, a Graph Convolutional Network (GCN) can be used to learn embeddings for each
function node in the CPG, capturing both the local code features and the structural information of
the graph. These embeddings can then be fed into a classifier to predict the vulnerability likelihood
of each function.

Link Prediction

Link prediction is another powerful application of graph-based machine learning on CPGs. The goal
of link prediction is to estimate the likelihood of the existence of an edge between two nodes based
on the graph's structure and node attributes. In the context of CPGs, link prediction can be used to
identify potential data flow or control flow dependencies that may lead to vulnerabilities.

For example, consider a scenario where a zero-day vulnerability is discovered in a widely-used
library. The vulnerability arises from an attacker-controlled input being passed to a sensitive function

5



without proper validation. By analyzing the CPG of the affected codebase, we can use link
prediction techniques to identify other potential instances of this vulnerability.

To achieve this, we can train a link prediction model using the existing edges in the CPG as positive
examples and generate negative examples by randomly sampling non-existent edges. The model
learns to predict the likelihood of an edge existing between two nodes based on their attributes and
the graph's structure. In the case of the zero-day vulnerability, we can use the model to predict
potential data flow paths from user input sources to sensitive functions, helping identify other
potential instances of the vulnerability.

Graph Embedding Techniques

Graph embedding techniques play a crucial role in enabling graph-based machine learning on
CPGs. These techniques aim to learn low-dimensional vector representations (embeddings) of
nodes or entire graphs, capturing their structural and semantic information.

One popular graph embedding technique is Node2Vec, which learns embeddings by performing
random walks on the graph and optimizing a skip-gram objective. By applying Node2Vec to a CPG,
we can learn embeddings that capture the code structure and semantic relationships between code
elements. These embeddings can then be used as input features for downstream tasks such as
node classification or link prediction.

Another powerful approach is Graph Convolutional Networks (GCNs), which learn node
embeddings by aggregating information from neighboring nodes using convolutional operations.
GCNs can capture both the local code features and the graph structure, making them well-suited
for vulnerability detection tasks on CPGs.

Example: Detecting a Zero-Day Vulnerability using CPG and Graph-based ML Let's consider a
real-world example to illustrate the potential of leveraging CPGs with graph-based machine learning
for detecting a zero-day vulnerability.

Suppose a critical zero-day vulnerability is discovered in a popular open-source library. The
vulnerability allows an attacker to perform a remote code execution by exploiting a flaw in the
library's deserialization mechanism.

To detect potential instances of this vulnerability in a large codebase, we can follow these steps:

1. Construct a CPG of the codebase, representing code elements (e.g., functions,
variables) as nodes and their relationships (e.g., function calls, data flow) as edges.

2. Identify the relevant code patterns and characteristics associated with the
vulnerability, such as the use of the vulnerable deserialization function, the presence
of user-controlled inputs, and the data flow paths leading to the vulnerable code.

6



3. Train a graph-based machine learning model, such as a GCN, on the CPG. The
model learns to classify nodes as "vulnerable" or "safe" based on their code features
and the graph structure.

4. Apply the trained model to the CPG of the codebase, identifying potential instances
of the vulnerability. The model can flag functions or code snippets that exhibit
characteristics similar to those of known vulnerable patterns.

5. Performmanual code review on the flagged instances to confirm the presence of the
vulnerability and take appropriate remediation actions.

By leveraging the CPG's graph-based substrate and applying graph-based machine learning
techniques, we can efficiently identify potential instances of a zero-day vulnerability across a large
codebase. This approach can significantly reduce the time and effort required for manual code
review and help prioritize remediation efforts.

The Power of Generative AI - Large
Language Models
Large Language Models, such as GPT-3, have emerged as a game-changer in the field of natural
language processing. These models, trained on vast amounts of text data, possess an
extraordinary ability to understand and generate human-like text. By harnessing the power of LLMs,
we can leverage their linguistic capabilities to assist in the generation of code patches and security
fixes.

Synergizing CPGs, Predictive AI on CPGs and LLMs

The true magic happens when we combine the insights derived from Code Property Graphs with
the generative capabilities of Large Language Models. By training LLMs on data extracted from
CPGs, we can create a powerful system that not only detects vulnerabilities with high precision but
also suggests targeted patches to mitigate those vulnerabilities.

Fine Tuned Training

The training process involves carefully preparing and structuring the CPG data, selecting relevant
features, and annotating code snippets with appropriate labels. This curated data is then fed into
the LLM, enabling it to learn the intricacies of code structure, dependencies, and vulnerability
patterns.

7



Few-Shot Prompting

The Key to Targeted Patch Generation Once the LLM is trained, the real power lies in its ability to
generate accurate and contextually relevant code patches. This is achieved through a technique
called few-shot prompting. By providing the model with a few examples of vulnerabilities and their
corresponding fixes, along with specific details from the CPG analysis, we can guide the LLM to
generate highly targeted patches.

The key to effective few-shot prompting lies in the precision and relevance of the examples
provided. By incorporating detailed context from the CPG, such as the specific vulnerability type,
location in the code, and data flow information, the LLM can generate patches tailored to each
vulnerability's unique characteristics.

Few-Shot Prompting with Precision
Once a vulnerability is identified via CPG, the next step involves guiding an LLM to suggest an
appropriate patch. Here’s how this can be effectively accomplished using few-shot prompting:

1. Example: Construct a few-shot prompt that includes examples of similar
vulnerabilities, paired with secure coding practices. For example:

● Example 1: "User input directly passed to exec() function. Vulnerable code:
exec('ping ' + user_input). Fixed code: exec('ping ' +

sanitize(user_input))."

● Example 2: "User input used in file path without validation. Vulnerable code:
open(user_input, 'r'). Fixed code:
open(sanitize_path(user_input), 'r')."

2. Vulnerability Context: Provide the LLM with the specific context of the detected
vulnerability using CPG analysis. For instance, "Detected command injection risk
where user input from form field user_data flows directly into exec() function."

3. Prompt for Solution: Ask the LLM to generate a patch based on the example
structure and the specific vulnerability context: "Given the above examples and the
detected vulnerability in the exec() function call using user_data, suggest a secure
patch."

4. Patch Generation: The LLM uses the detailed input from the few-shot examples and
the specifics of the vulnerability to suggest a precise fix, such as introducing a
sanitization function specific to command injections: exec('ping ' +
sanitize(user_input)).

8



How does this work in practice? In the example below, we see the CPG highlighting the data flow of
a Log Forging vulnerability in an application.

The resulting fix based on Few-Shot prompting combined with the detailed CPG information
provides a thorough fix that addresses the issue.

9



Conclusion
The integration of Code Property Graphs and Large Language Models represents a significant leap
forward in vulnerability detection and patching. By leveraging the deep insights provided by CPGs
and the generative capabilities of LLMs, we can create a powerful system that not only identifies
vulnerabilities with high precision but also suggests accurate and contextually relevant patches.

This synergistic approach has the potential to revolutionize the way we approach software security.
It accelerates the vulnerability management process, reduces manual effort, and ultimately
enhances the overall security posture of software applications. As we continue to refine and
advance these techniques, we can look forward to a future where software vulnerabilities are swiftly
detected and patched, ensuring a safer digital ecosystem for all.

About Qwiet AI
Qwiet AI is the AI-enhanced application security testing platform that provides SAST, SCA,
Container Scanning, and Secrets Detection all in one fast and comprehensive scan. Qwiet AI
customers benefit from targeted results with scans that are 10x faster and 12x more accurate than
traditional application security tools.

10


